Bursate Nematodes
(The Trichostrongyles, Strongyles and Hookworms)

Introduction:

The bursate nematodes (also known as strongyle-type nematodes because of their eggs), is a group of nematodes in which the males have a copulatory bursa at their posterior end which wraps around the female during mating. All these worms live in the intestine of their hosts and have "strongyle-type" eggs (see the photo to the right). This type of egg has a thin shell, and an 8 to 16 cell morula, visible inside (as they are passed in the feces). Hookworms are bursate worms in which the anterior end is bent 90 degrees, putting the mouth on the side of a worm instead of at the front. Hookworms live in the small intestine of their hosts.

Objectives:

The strongyles of livestock all have similar eggs ("strongyle- type"), most of which hatch and develop to the infective third-stage on pasture. However, the life-cycles differ to some degree and the different species can cause different diseases. While the newer anthelmintics kill a broad range of strongyles, control measures may vary for each worm. Therefore, it is important to differentiate these worms based on their morphology and the location from which they were recovered upon necropsy. In dogs and cats the presence of a strongyle-type egg in the stool indicates an infection with a hookworm. Since there are several hookworms with similar sized eggs (some of which are of public health importance), the parasitologist must examine the mouthparts of the adult worms to determine which species is present.

At the Bench

1.) *Ancylostoma* eggs: Do a fecal float to recover *Ancylostoma caninum* ova from dog feces.
 (60 x 40 μm, pg. 23, Foreyt)

2.) *Ancylostoma caninum* adult: Look at the *Ancylostoma* slide on your bench. Without using the microscope get a feeling for the size of the worm. Hookworms will be the only nematodes that are this size and found in the small intestine of dogs and cats. *A. tubaeforme* is identical to *A. caninum* but is only found in cats. *Uncinaria stenocephala* is somewhat smaller than the *Ancylostoma* spp. If the specimen on the *Ancylostoma* slide is mounted with the ventral side up, you will be able to see the buccal cavity with the characteristic “teeth” using the 10X lens of your microscope (see figure 1).
3) The McMaster counting slide and its use in the Fecal Egg Count Reduction Test (FECRT).

Estimate the number of strongyle type eggs per gram of feces using the McMaster Egg Counting method (see Techniques Pg. 10). Fecal samples (2 grams, pre-weighed for you) for use with this technique are provided on the benches. The fecal samples came from individual animals in a herd, both before and after anthelminthic treatment. You will be using your counts and those of your classmates in the Case Study that accompanies this lab.

Note: You can make one flask of the diluted feces for each individual fecal sample and everyone at the bench can use it to do a McMaster count, just be sure to shake it very well before filling your McMaster slide chambers.

Enter your counts on the Parasitology Course Material web site (in section 3) by tomorrow afternoon. All counts for each sample will be averaged and the mean counts for each animal, before and after treatment, will be posted on the Parasitology Course Materials web site (in section 3).

With the advent of multi-drug resistance in many of the GI nematodes of sheep and goats (and in some areas, llamas and cattle) a fecal egg count is becoming a necessity in the management of ruminant herd health. Drug resistance can be defined by the Fecal Egg Count Reduction Test (FECRT). This is just 2 fecal egg counts, one done before drug treatment and the other done post-treatment (the time post-treatment varies with the drug used - see Lab 2 appendixes). A reduction of less than 90% indicates the worms are resistant to the drug used. Usually this is done at the herd level to reduce the variation due to physical problems with the count and/or drug treatments that would be seen in individual animals. The value of 90% is based on the level the FDA requires of a drug before it can be licensed, and thus all drugs in use originally produced a reduction of at least this level. The percent reduction can be calculated from the following equation:

\[
(1 - \frac{\text{Count post-treatment}}{\text{Count pre-treatment}}) \times 100 = \% \text{ reduction}
\]

4) Examine the worms found in the 4 dishes on the front bench. The nematodes in the dishes (separated for you by species) might be found in a sample of the abomasum’s contents. You should identify the species based mainly on size, but remember, male and female worms of the same species may be of slightly different sizes.

A. *Haemonchus contortus*

The largest of the nematodes found in the abomasum, they are 2 to 3 cm in length. The adult female will have her white ovaries wrapped around her intestine, which, when full of blood gives the appearance of a "barber pole," hence the common name "Barber pole worm." The male worm will have an asymmetrical dorsal ray (i.e., the dorsal ray arises from one side of the mid-line). (See pg 19 of the text: Urquhart, et al.), however, you are not responsible for identifying this feature on the males, it is enough to know that the worm is a male (it has a bursa) and because of its size it probably is *Haemonchus contortus.*
Laboratory 2 Pg. 3

The number of adult *Haemonchus contortus* in a sheep or goat can qualitatively be estimated by the use of the FAMACHA eye chart (see DEMO) which measures the level of anemia in the animal. The greater the level of anemia, the greater the number of *H. contortus* (i.e., blood loss is directly related to worm number).

B. *Ostertagia* sp.

Of the 3 nematodes found in the abomasum of sheep, this species is intermediate in size (about 1 cm long).

C. *Trichostrongylus axei*

The smallest of the abomasal nematodes, less than 7mm long (hard to see with the naked eye). (See pg. 23 of Urquhart et al. and Figure 1.)

5) Examine the stained section (Slide #30 on bench) which shows the buccal capsule of a *Strongylus* sp. attached to the large intestinal wall of a horse. Notice how the plug of tissue is pulled into the buccal cavity of the worm for digestion prior to ingestion (FYI only).

Horse large intestinal contents (on front bench):

Material contained in this tray, was removed from the large intestine of an equine at postmortem. **Notice the difference in size between the large and small strongyles.** The large strongyles can be differentiated by size and the number of “teeth” in the buccal capsule.

The following worms may be found: *Strongylus vulgaris*, *S. edentatus*, *S. equinus*, *Cyathostoma* sp. and other small strongyles, and *Anoplocephala perfoliata* (a tapeworm which will we cover in Lab 5).

Note: the color of preserved specimens differs from that of fresh, and even varies depending on the initial state of the worm and how it was preserved. Therefore, do not use color as an identifying characteristic. Also you can't see the teeth in these bile-stained, formalin fixed specimens, therefore use size to separate *S. vulgaris* from the other two large strongyles.

Demonstrations

1.) Strongyle-type egg: This is the type of egg produced by most bursate nematodes. It is basically oval in shape (although it may be pointed at one or both ends in some species) with a clear thin shell. It will contain an embryo of 8 or more cells (the number of cells depends on how long it has been out of the host). The strongyle-type eggs of large animal parasites will measure 77 x 34 μm to 100 x 50 μm depending on the species. Hookworm eggs - The “hookworms” are bursate nematodes and thus have “strongyle”-type eggs. Hookworm eggs usually measure 60 to 70 μm long. Hookworms are the only common strongyle-type worms found in dogs and cats in the USA.
2.) *Nematodirus* spp. egg: This egg is similar to the other strongyle-type eggs, but is much larger measuring 175 x 75 μm (*N. battus*) to 200 x 90 μm (*N. filicollis*) and thus easily recognizable to genus and even to species.

3.) The abomasal nematodes of ruminants: *Haemonchus, Ostertagia, Trichostrongylus.*

These nematodes are displayed together on a separate bench (see above). You should be able to identify them by their size and the fact that they were removed from the abomasum.

4.) *Ollulanus tricuspis* - this is the stomach worm of cats and pigs. This small nematode (~1 mm) is ovoviviparous (gives birth to larva rather than eggs, the eggs hatch in the uterus) and transmission is via vomiting. They feed on the stomach wall producing ulcers which leads to the vomiting, the next host then eats the vomit containing the L3. Normally no stage will pass in the feces, so a diagnosis is made by finding the adults or larvae in the vomit.

The “Large Strongyles” of the large intestine of horses: separate them first by size - *S. vulgaris* is much smaller than the other two, but still much larger than the “Small Strongyles”. Parasitologists can separate *S. edentatus* from *S. equinus* by the number of teeth in the buccal cavity, but you will not be asked to do so.

5.) *Strongylus vulgaris* - the smallest (1.5-2.5 cm) of the 3 species of *Strongylus* (the “large strongyles”) found in the horse. All of the adult *Strongylus* spp. have a large buccal capsule, but differ in the number of teeth in the capsule. *S. vulgaris* has two dorsal, ear-shaped teeth.

6.) *S. edentatus* (2.5 to 4.5 cm) No teeth in the buccal capsule.

7.) *S. equinus* (2.5 to 5.0 cm) 3 cone-shaped teeth in the buccal capsule

 Note: In specially prepared ("cleared") specimens both *S. vulgaris* and *S. equinus* have a pair of teeth situated on both sides of the midline at the bottom of the buccal capsule. When viewed directly from the side these two teeth may overlap and appear as one tooth. *S. edentatus* (as the Latin species name tells you) has no teeth in the buccal capsule.

8.) *Cyathostomum* sp. - one of the many “small strongyles” (<1.5 cm), the buccal capsule is shallow and contains no teeth. There are more than 40 species of “small strongyles” (belonging to 10 or more genera) in horses. Any one horse will have 10 to 20 different species at one time.

9.) *Ancylostoma caninum* adult: These small worms (2-3 cm) are found attached to the wall of the small intestine of dogs. They are the only bursate worms you are likely to see in the intestine of dogs in the US. The adult worm can suck 0.2 ml of blood per day.

Ancylostoma spp. Eggs: These are typical strongyle type eggs, although they are smaller than those belonging to the horses or ruminants (*A. caninum* eggs measure 60 x 40 μm).
10.) Other “hookworms”

A.) *Uncinaria stenocephala* - wild and domestic canines. Common in Europe and Canada its range extends into the northern U.S. Note the **cutting plates** instead of teeth (Fig. 2). Its eggs are larger (70 x 45 μm) than those of *Ancylostoma* spp. so an observant veterinarian will be able to tell that they are not looking at *Ancylostoma* eggs.

![Fig. 1](image1.png)
Fig. 1
A. caninum or
A. tubaeforme

![Fig. 2](image2.png)
Fig. 2.
Uncinaria stenocephala

B.) *A. braziliense* - dogs and cats. 1 large and 1 small tooth per side. This worm is the main causative agent of cutaneous larval migrans in humans, however it is generally found in warmer areas of the world (the Caribbean and Latin America in our hemisphere).

C.) *Bunostomum* sp. - the sheep/cattle hookworm. This large hookworm also has cutting plates in the mouth capsule of the adult worm, similar to *Uncinaria*.

11.) Other bursate worms of Ruminants

The following worms may be found in the small intestine of ruminants:

A) Other *Trichostrongylus* spp. (Not shown) - similar to the *T. axei* of the abomasum.

B) *Cooperia* sp. - small worm (4-6 mm). The worm may be tightly coiled, giving the appearance of a watch-spring ("watch-spring" worm) the cuticle of the anterior end is slightly swollen (cephalic vesicle) and striated.

C) *Nematodirus* sp. - a long (about 1 to 2 cm), thin worm. The spicules of the male extend past the bursa. The egg is twice as large as any other strongyle - type egg (pg. 83, Foreyt).

12.) Bursate nematodes of Swine

A. *Oesophagostomum* sp. - ("nodule worm") causes the formation of nodules in the intestine. Since the acute disease is associated with the larvae, eggs are not usually present in the feces at this time.
B. *Stephanurus* sp. - Large (4-5cm), stout worm, found around and in the kidney of pigs. Fresh specimens are pinkish in color. The size of the worm and site (kidney) are enough to identify this worm. Strongyle-type eggs are found in the **urine**, however, the disease's main pathological effects occur during the prepatent phase.

13.) Bursate nematodes of Poultry

A. *Syngamus trachea* - Occurs in the trachea of turkey, goose, fowl and various wild birds. The sexes are found in permanent copulation, hence the "Y"-shaped appearance of the worm pair. Male 2 to 6 mm Female 5 to 20 mm

Checklist of Objectives:

Be able to do the following techniques:

- McMaster egg count to determine the EPG.
- Fecal Egg Count Reduction Test

Be able to identify the following:

- A typical “strongyle-type” egg (in a dog or cat this indicates an infection with either *Ancylostoma* or *Uncinaria*).
- *Nematodirus* spp. egg
- *Haemonchus* Adult (Largest abomasal nematode)
- *Ostertagia* Adult (abomasal nematode - middle in size)
- *Trichostrongylus* Adult (Smallest abomasal nematode)
- *Ollulanus* Adult (from stomach of a cat)
- *Strongylus vulgaris* Adult
- Large Strongyle Adult (generic, from horse)
- Small Strongyle Adult (generic, from horse)
- *Ancylostoma caninum* and *A. tubaeforme* (by size, location and host)
Appendix for Laboratory #2
(All for your information only, not test material)

ROLLING NEMATODES

This technique is used by parasitologists to examine the morphology of small nematodes in order to identify them as to species.

Place a worm on a slide with a drop of water and a coverslip. Place the slide on your microscope under low power and roll the worm by moving the coverslip around. If the worm is a male try to get it in such a position that the bursa is spread out so the dorsal ray is visible. If the specimen is a female, roll it until the vulva is visible.
SIGNIFICANCE OF EGG COUNTS*
(These are only approximate and should be considered in association with the clinical signs.)
Parasitic gastritis in lambs† 2000 - 6000 EPG
Parasitic gastritis in cattle 300 - 600 EPG
Strongylosis in equines 1500 - 2500 EPG
Fascioliasis in sheep 300 - 600 EPG
Fascioliasis in cattle 100 - 200 EPG
*A yearling calf will produce 12,000 gm of feces each day, so at a count of 100 EPG the pasture will receive 1,200,000 eggs per day. (Roberts, et al., 1951, Australian Vet Journal 27:16-18.)
† For sheep the above guidelines vary by season: in the Spring 500 - 1000 EPG is a serious infection, while in the Fall > 2000 EPG is a serious infection.

EGG LAYING CAPACITY OF SOME NEMATODES

<table>
<thead>
<tr>
<th>Species</th>
<th>Eggs per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemonchus contortus</td>
<td>5000 - 10000</td>
</tr>
<tr>
<td>Ostertagia and Trichostrongylus spp.</td>
<td>500 - 2000</td>
</tr>
<tr>
<td>Nematodirus filicollis</td>
<td>50 - 250</td>
</tr>
</tbody>
</table>

SEVERITY OF INFECTION

Fatal effects seldom seen with less than:

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of worms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemonchus contortus</td>
<td>1,000 worms</td>
</tr>
<tr>
<td>Ostertagia circumcincta</td>
<td>8,000 worms</td>
</tr>
<tr>
<td>Trichostrongylus spp.</td>
<td>10,000 worms</td>
</tr>
<tr>
<td>Chabertia ovina</td>
<td>100 worms</td>
</tr>
</tbody>
</table>

Fecal Egg Count Reduction Test - time needed before 2nd count is run:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Days post-treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levamisole, Pyrantel</td>
<td>7</td>
</tr>
<tr>
<td>Benzimidoles</td>
<td>10</td>
</tr>
<tr>
<td>Avermectins</td>
<td>14</td>
</tr>
</tbody>
</table>